Maximizing the relationship of yield to site-specific management zones with object-oriented segmentation of hyperspectral images

Autor: Pablo J. Zarco-Tejada, Xinle Zhang, Susan L. Ustin, Ted Huffman, Huanjun Liu, Michael L. Whiting
Rok vydání: 2018
Předmět:
Zdroj: Precision agriculture., vol 19, iss 2
Popis: Quick and low cost delineation of site-specific management zones (SSMZ) would improve applications of precision agriculture. In this study, a new method for delineating SSMZ using object-oriented segmentation of airborne imagery was demonstrated. Three remote sensing domains—spectral, spatial, and temporal- are exploited to improve the SSMZ relationship to yield. Common vegetation indices (VI), and first and second derivatives ([Formula: see text], [Formula: see text]) from twelve airborne hyperspectral images of a cotton field for one season [Formula: see text] were used as input layers for object-oriented segmentation. The optimal combination of VI, SSMZ size and crop phenological stage were used as input variables for SSMZ delineation, determined by maximizing the correlation to segmented yield monitor maps. Combining narrow band vegetation indices and object-oriented segmentation provided higher correlation between VI and yield at SSMZ scale than that at pixel scale by reducing multi-resource data noise. VI performance varied during the cotton growing season, providing better SSMZ delineation at the beginning and middle of the season (days after planting (DAP) 66–143).The optimal scale determined for SSMZ delineation was approximately 240 polygons for the study field, but the method also provided flexibility enabling the setting of practical scales for a given field. For a defined scale, the optimal single phenological stage for the study field was near July 11 (DAP 87) early in the growing season. SSMZs determined from multispectral VIs at a single stage were also satisfactory; compared to hyperspectral indices, temporal resolution of multi-spectral data seems more important for SSMZ delineation.
Databáze: OpenAIRE