Natural Convection in a Hydrodynamically and Thermally Anisotropic Non-Rectangular Porous Cavity: Effect of Internal Heat Generation/Absorption

Autor: Beer S. Bhadauria, Ashok K. Singh, Nirmal C. Sacheti, Pallath Chandran
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Applied Mechanics and Engineering, Vol 23, Iss 3, Pp 595-609 (2018)
ISSN: 2353-9003
1734-4492
Popis: Laminar natural convection in a trapezoidal porous vertical cavity has been investigated in this work. It is assumed that the porous enclosure is filled up with a permeable material subject to hydrodynamic and thermal anisotropy, the flow being governed by the Darcy law as applicable to a non-isotropic medium. It is further assumed that (i) there is heating at the left vertical wall and cooling at the right wall of the enclosure and (ii) the flow domain is subject to the presence of heat source or heat sink. The partial differential equations governing the resulting free convection have been solved numerically in the non-dimensional forms. There arises a number of parameters relating to buoyancy, internal heating, cavity aspect ratio and inclination of the upper surface to the horizontal. The influence of these parameters has been illustrated and analyzed through contours of streamlines and isotherms. We have also discussed the role of internal heating as well as anisotropy on the heat transfer characteristics.
Databáze: OpenAIRE