Higher-order differential properties of Keccak and Luffa

Autor: Anne Canteaut, Christophe De Cannière, Christina Boura
Přispěvatelé: Security, Cryptology and Transmissions (SECRET), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Gemalto [Meudon], GEMALTO (GEMALTO), Department of Electrical Engineering [Leuven] (ESAT), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), projet SAPHIR2, ANR-08-VERS-014,projet SAPHIR2, ANR-08-VERS-014, ANR-08-VERS-0014,SAPHIR 2,: Sécurité et Analyses de Primitives de Hachage Innovantes et Récentes 3(2008), Antoine Joux
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Fast Software Encryption-FSE 2011
Fast Software Encryption-FSE 2011, Feb 2011, Lyngby, Denmark. pp.252-269, ⟨10.1007/978-3-642-21702-9_15⟩
Fast Software Encryption ISBN: 9783642217012
FSE
DOI: 10.1007/978-3-642-21702-9_15⟩
Popis: International audience; In this paper, we identify higher-order differential and zero-sum properties in the full Keccak-f permutation, in the Luffa v1 hash function and in components of the Luffa v2 algorithm. These structural properties rely on a new bound on the degree of iterated permutations with a nonlinear layer composed of parallel applications of a number of balanced Sboxes. These techniques yield zero-sum partitions of size 2^{1575} for the full Keccak-f permutation and several observations on the Luffa hash family. We first show that Luffa v1 applied to one-block messages is a function of 255 variables with degree at most 251. This observation leads to the construction of a higher-order differential distinguisher for the full Luffa v1 hash function, similar to the one presented by Watanabe et al. on a reduced version. We show that similar techniques can be used to find all-zero higher-order differentials in the Luffa v2 compression function, but the additional blank round destroys this property in the hash function.
Databáze: OpenAIRE