Pulse Shaping for MC via Particle Size
Autor: | Wayan Wicke, Rebecca C. Felsheim, Lukas Brand, Vahid Jamali, Helene M. Loos, Andrea Buettner, Robert Schober |
---|---|
Rok vydání: | 2022 |
Předmět: | |
DOI: | 10.48550/arxiv.2201.06425 |
Popis: | In molecular communication (MC), combining different types of particles at the transmitter is a degree of freedom which can be utilized to improve performance. In this paper, we address the problem of pulse shaping to simplify time synchronization requirements by exploiting and combining the received signal characteristics of particles of different sizes. In particular, we optimize the mixture of particles of different sizes used for transmission in order to support a prescribed detection time period for on-off keying, guaranteeing on average 1) a sufficiently large received signal if a binary one is transmitted, and 2) a low enough received signal if a binary zero is transmitted even in the presence of inter-symbol interference. For illustration, we consider an optimization problem based on a free space diffusion channel model. It is shown that there is a tradeoff between the maximum feasible detection duration and the peak detection value for different particle sizes from the smallest particle size enabling the largest detection duration to the largest particle size minimizing the peak detection value at the expense of a limited detection duration. Comment: \c{opyright} 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works |
Databáze: | OpenAIRE |
Externí odkaz: |