Polymatroid-based capacitated packing of branchings

Autor: Tatsuya Matsuoka, Zoltán Szigeti
Přispěvatelé: Optimisation Combinatoire (G-SCOP_OC ), Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Rok vydání: 2019
Předmět:
Zdroj: Discrete Applied Mathematics
Discrete Applied Mathematics, Elsevier, 2019, 270, pp.13. ⟨10.1016/j.dam.2019.06.014⟩
ISSN: 0166-218X
DOI: 10.1016/j.dam.2019.06.014
Popis: International audience; Edmonds (1973) characterized the condition for the existence of a packing of spanning arborescences and also that of spanning branchings in a directed graph. Durand de Gevigney, Nguyen and Szigeti (2013) generalized the spanning arborescence packing problem to a matroid-based arborescence packing problem and gave a necessary and sufficient condition for the existence of a packing and a polynomial-time algorithm.In this paper, a generalization of this latter problem – the polymatroid-based arborescence packing problem – is considered. Two problem settings are formulated: an unsplittable version and a splittable version. The unsplittable version is shown to be strongly NP-complete. Whereas, the splittable version, which generalizes the capacitated version of the spanning arborescence packing problem, can be solved in strongly polynomial time. For convenience, we provide a strongly polynomial-time algorithm for the problem of the polymatroid-based capacitated packing of branchings for the splittable version.
Databáze: OpenAIRE