Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation

Autor: Angkana Rüland, Wiktoria Zatoń, María Ángeles García-Ferrero
Jazyk: angličtina
Předmět:
Zdroj: Inverse problems and imaging
ISSN: 1930-8345
1930-8337
DOI: 10.3934/ipi.2021049
Popis: In this article, we discuss quantitative Runge approximation properties for the acoustic Helmholtz equation and prove stability improvement results in the high frequency limit for an associated partial data inverse problem modelled on \cite{AU04, KU19}. The results rely on quantitative unique continuation estimates in suitable function spaces with explicit frequency dependence. We contrast the frequency dependence of interior Runge approximation results from non-convex and convex sets.
Comment: 28 pages, comments welcome
Databáze: OpenAIRE