Envelopes of embedded super-Earths – II. Three-dimensional isothermal simulations
Autor: | Roman R. Rafikov, William Béthune |
---|---|
Přispěvatelé: | Rafikov, Roman [0000-0002-0012-1609], Apollo - University of Cambridge Repository |
Rok vydání: | 2019 |
Předmět: |
Earth and Planetary Astrophysics (astro-ph.EP)
Physics 010308 nuclear & particles physics Gas giant Turbulence Mixing (process engineering) FOS: Physical sciences Astronomy and Astrophysics Astrophysics Radius 01 natural sciences Accretion (astrophysics) 13. Climate action Space and Planetary Science Planet astro-ph.EP 0103 physical sciences Hill sphere Astrophysics::Solar and Stellar Astrophysics Astrophysics::Earth and Planetary Astrophysics 010303 astronomy & astrophysics Astrophysics::Galaxy Astrophysics Astrophysics - Earth and Planetary Astrophysics Envelope (waves) |
Zdroj: | Monthly Notices of the Royal Astronomical Society. 488:2365-2379 |
ISSN: | 1365-2966 0035-8711 |
Popis: | Massive planetary cores embedded in protoplanetary discs are believed to accrete extended atmospheres, providing a pathway to forming gas giants and gas-rich super-Earths. The properties of these atmospheres strongly depend on the nature of the coupling between the atmosphere and the surrounding disc. We examine the formation of gaseous envelopes around massive planetary cores via three-dimensional inviscid and isothermal hydrodynamic simulations. We focus the changes in the envelope properties as the core mass varies from low (sub-thermal) to high (super-thermal) values, a regime relevant to close-in super-Earths. We show that global envelope properties such as the amount of rotational support or turbulent mixing are mostly sensitive to the ratio of the Bondi radius of the core to its physical size. High-mass cores are fed by supersonic inflows arriving along the polar axis and shocking on the densest parts of the envelope, driving turbulence and mass accretion. Gas flows out of the core's Hill sphere in the equatorial plane, describing a global mass circulation through the envelope. The shell of shocked gas atop the core surface delimits regions of slow (inside) and fast (outside) material recycling by gas from the surrounding disc. While recycling hinders the runaway growth towards gas giants, the inner regions of protoplanetary atmospheres, more immune to mixing, may remain bound to the planet. Comment: 16 pages, 15 figures, accepted for publication in MNRAS |
Databáze: | OpenAIRE |
Externí odkaz: |