On Approximations by Trigonometric Polynomials of Classes of Functions Defined by Moduli of Smoothness

Autor: Mikhail K. Potapov, Nimete Sh. Berisha, Marjan Dema, Faton M. Berisha
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Abstract and Applied Analysis, Vol 2017 (2017)
Abstr. Appl. Anal.
ISSN: 1687-0409
1085-3375
Popis: In this paper, we give a characterization of Nikol'ski\u{\i}-Besov type classes of functions, given by integral representations of moduli of smoothness, in terms of series over the moduli of smoothness. Also, necessary and sufficient conditions in terms of monotone or lacunary Fourier coefficients for a function to belong to a such a class are given. In order to prove our results, we make use of certain recent reverse Copson- and Leindler-type inequalities.
Comment: 18 pages. arXiv admin note: substantial text overlap with arXiv:1208.6123
Databáze: OpenAIRE