Discrete Malliavin–Stein method: Berry–Esseen bounds for random graphs and percolation

Autor: Christoph Thäle, Anselm Reichenbachs, Kai Krokowski
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Ann. Probab. 45, no. 2 (2017), 1071-1109
Popis: A new Berry–Esseen bound for nonlinear functionals of nonsymmetric and nonhomogeneous infinite Rademacher sequences is established. It is based on a discrete version of the Malliavin–Stein method and an analysis of the discrete Ornstein–Uhlenbeck semigroup. The result is applied to sub-graph counts and to the number of vertices having a prescribed degree in the Erdős–Renyi random graph. A further application deals with a percolation problem on trees.
Databáze: OpenAIRE