Photometric Depth Super-Resolution

Autor: Songyou Peng, Daniel Cremers, Alok Verma, Bjoern Haefner, Yvain Quéau
Přispěvatelé: Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
Computer science
Computer Vision and Pattern Recognition (cs.CV)
variational methods
Computer Science - Computer Vision and Pattern Recognition
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
02 engineering and technology
Iterative reconstruction
shape-from-shading
Upsampling
Photometry (optics)
Artificial Intelligence
Depth map
0202 electrical engineering
electronic engineering
information engineering

Computer vision
Image resolution
ComputingMethodologies_COMPUTERGRAPHICS
depth super-resolution
business.industry
RGB-D cameras
Applied Mathematics
deep learning
photometric stereo
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Reflectivity
Superresolution
Photometric stereo
Computational Theory and Mathematics
RGB color model
020201 artificial intelligence & image processing
Computer Vision and Pattern Recognition
Artificial intelligence
business
Software
Zdroj: IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2020, 42 (10), pp.2453--2464. ⟨10.1109/TPAMI.2019.2923621⟩
ISSN: 1939-3539
0162-8828
Popis: This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equally
Databáze: OpenAIRE