Renormalization in Minkowski space-time
Autor: | I. Steib, Janos Polonyi, Sándor Nagy |
---|---|
Přispěvatelé: | Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
High Energy Physics - Theory
Nuclear and High Energy Physics dimension: 4 Scalar (mathematics) pole FOS: Physical sciences 01 natural sciences symmetry breaking 11.10.Gh renormalization space-time: Euclidean Renormalization real-time evolution 0103 physical sciences Minkowski space Functional renormalization group Mathematics::Metric Geometry space-time: Minkowski 010306 general physics Mathematical physics Physics 010308 nuclear & particles physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] Multiplicative function quasiparticle spontaneous symmetry breaking Astronomy and Astrophysics Atomic and Molecular Physics and Optics 11.10.Hi regularization High Energy Physics - Theory (hep-th) 05.10.cc trajectory renormalization group: flow |
Zdroj: | Int.J.Mod.Phys.A Int.J.Mod.Phys.A, 2021, 36 (05), pp.2150031. ⟨10.1142/S0217751X21500317⟩ |
DOI: | 10.1142/S0217751X21500317⟩ |
Popis: | The multiplicative and the functional renormalization group methods are applied for the four dimensional scalar theory in Minkowski space-time. It is argued that the appropriate choice of the subtraction point is more important in Minkowski than in Euclidean space-time. The parameters of the cutoff theory, defined by a subtraction point in the quasi-particle domain, are complex due to the mass-shell contributions and the renormalization group flow becomes much more involved than its Euclidean counterpart. Comment: 25 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...