Fluid-structure interaction with $H(\text{div})$-conforming finite elements
Autor: | Joachim Schöberl, Michael Neunteufel |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Physics
74F10 (Primary) 76D05 65M60 (Secondary) Mechanical Engineering Mathematical analysis Fluid Dynamics (physics.flu-dyn) Boundary (topology) FOS: Physical sciences 010103 numerical & computational mathematics Physics - Fluid Dynamics Computational Physics (physics.comp-ph) 01 natural sciences Finite element method Computer Science Applications 010101 applied mathematics Piola transformation Discontinuous Galerkin method Modeling and Simulation Convergence (routing) Fluid–structure interaction General Materials Science Gravitational singularity 0101 mathematics Divergence (statistics) Physics - Computational Physics Civil and Structural Engineering |
Popis: | In this paper a novel application of the (high-order) H ( div ) -conforming Hybrid Discontinuous Galerkin finite element method for monolithic fluid-structure interaction (FSI) is presented. The Arbitrary Lagrangian Eulerian (ALE) description is derived for H ( div ) -conforming finite elements including the Piola transformation, yielding exact divergence free fluid velocity solutions. The arising method is demonstrated by means of the benchmark problems proposed by Turek and Hron (2006). With hp-refinement strategies singularities and boundary layers are overcome leading to optimal spatial convergence rates. |
Databáze: | OpenAIRE |
Externí odkaz: |