Parity Biquandle Invariants of Virtual Knots
Autor: | Leo Selker, Aaron Kaestner, Sam Nelson |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
Biquandle 010102 general mathematics 05 social sciences Geometric Topology (math.GT) 01 natural sciences Mathematics::Geometric Topology 57M27 57M25 Mathematics - Geometric Topology 0502 economics and business Mathematics - Quantum Algebra FOS: Mathematics Quantum Algebra (math.QA) Geometry and Topology 0101 mathematics Parity (mathematics) 050203 business & management Mathematics |
Popis: | We define counting and cocycle enhancement invariants of virtual knots using parity biquandles. These invariants are determined by pairs consisting of a biquandle 2-cocycle \phi^0 and a map \phi^1 with certain compatibility conditions leading to one-variable or two-variable polynomial invariants of virtual knots. We provide examples to show that the parity cocycle invariants can distinguish virtual knots which are not distinguished by the corresponding non-parity invariants. Comment: 12 pages; v2 includes changes suggested by referee |
Databáze: | OpenAIRE |
Externí odkaz: |