Online Drone-based Data Gathering Strategies for Ground Sensor Networks

Autor: Celia Yasmine Tazibt, Nadjib Achir, Tounsia Djamah
Přispěvatelé: Laboratoire de Traitement et Transport de l'Information (L2TI), Université Sorbonne Paris Nord, Laboratoire de Recherche en Informatique (LARI), Université Mouloud Mammeri [Tizi Ouzou] (UMMTO), inTeRnet BEyond the usual (TRiBE ), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: International Journal of Sensor Networks
International Journal of Sensor Networks, inPress, ⟨10.1504/IJSNET.2022.121702⟩
ISSN: 1748-1279
1748-1287
DOI: 10.1504/IJSNET.2022.121702⟩
Popis: International audience; This paper proposes two path-planning schemes for data collection in WSN using a drone flying over the sensor nodes to collect their data. We assign a weight to each sensor node corresponding to its priority in the collection process. When the drone selects its destination node, it will choose the one having the highest weight. We have defined utility functions based on the sensor nodes' information disseminated in the Wireless Sensor Network (WSN) using the Optimized Link State Routing protocol (OLSR). The information required to compute the nodes' weight is added to the exchanged packets during the execution of OLSR. The first proposed strategy is Data-driven Data Gathering Strategy (DDG) which uses the amount of stored data in each sensor node buffer. A priority is given to the nodes having the most significant data amount to collect. The second strategy is called Time-driven Data Gathering Strategy (TDG) where the age of the data is considered.
Databáze: OpenAIRE