Notions of optimal transport theory and how to implement them on a computer
Autor: | Erica L. Schwindt, Bruno Levy |
---|---|
Přispěvatelé: | Geometry and Lighting (ALICE), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
shape interpolation
Theoretical computer science 010103 numerical & computational mathematics 02 engineering and technology Computational algorithm fluid dynamics 01 natural sciences Mathematics - Analysis of PDEs 49M15 35J96 65D18 FOS: Mathematics 0202 electrical engineering electronic engineering information engineering Optimal transport [INFO]Computer Science [cs] Mathematics - Numerical Analysis 0101 mathematics [MATH]Mathematics [math] Physics GRASP General Engineering 020207 software engineering Transport theory Numerical Analysis (math.NA) Geometry processing Computer Graphics and Computer-Aided Design [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Human-Computer Interaction Mathematical theory Scientific domain Laguerre polynomials Voronoi diagram Mathematics Analysis of PDEs (math.AP) |
Zdroj: | Computers and Graphics Computers and Graphics, Elsevier, 2018, pp.1-22. ⟨10.1016/j.cag.2018.01.009⟩ Computers and Graphics, 2018, pp.1-22. ⟨10.1016/j.cag.2018.01.009⟩ |
ISSN: | 0097-8493 |
DOI: | 10.1016/j.cag.2018.01.009⟩ |
Popis: | This article gives an introduction to optimal transport, a mathematical theory that makes it possible to measure distances between functions (or distances between more general objects), to interpolate between objects or to enforce mass/volume conservation in certain computational physics simulations. Optimal transport is a rich scientific domain, with active research communities, both on its theoretical aspects and on more applicative considerations, such as geometry processing and machine learning. This article aims at explaining the main principles behind the theory of optimal transport, introduce the different involved notions, and more importantly, how they relate, to let the reader grasp an intuition of the elegant theory that structures them. Then we will consider a specific setting, called semi-discrete, where a continuous function is transported to a discrete sum of Dirac masses. Studying this specific setting naturally leads to an efficient computational algorithm, that uses classical notions of computational geometry, such as a generalization of Voronoi diagrams called Laguerre diagrams. 32 pages, 17 figures |
Databáze: | OpenAIRE |
Externí odkaz: |