Reinforcement of Optically Healable Supramolecular Polymers with Cellulose Nanocrystals
Autor: | Souleymane Coulibaly, Christoph Weder, Stuart J. Rowan, E. Johan Foster, Gina L. Fiore, Anita Roulin, Sandor Balog, Mahesh V. Biyani |
---|---|
Rok vydání: | 2013 |
Předmět: |
Materials science
Polymers and Plastics 02 engineering and technology 010402 general chemistry medicine.disease_cause 01 natural sciences Dissociation (chemistry) Inorganic Chemistry Metal chemistry.chemical_compound Pyridine Polymer chemistry Materials Chemistry medicine chemistry.chemical_classification Nanocomposite Ligand Organic Chemistry Polymer 021001 nanoscience & nanotechnology 0104 chemical sciences Supramolecular polymers chemistry visual_art visual_art.visual_art_medium 0210 nano-technology Ultraviolet |
Zdroj: | Macromolecules |
ISSN: | 1520-5835 0024-9297 |
DOI: | 10.1021/ma402143c |
Popis: | We report the preparation and characterization of light-healable nanocomposites based on cellulose nanocrystals (CNCs) and a metallosupramolecular polymer (MSP) assembled from a telechelic poly(ethylene-co-butylene) that was end-functionalized with 2,6-bis(1′-methylbenzimidazolyl) pyridine (Mebip) ligands and Zn(NTf2)2. The polymer absorbs incident ultraviolet (UV) radiation and converts it into heat, which causes dissociation of the metal–ligand motifs. This process liquefies the material, and small defects are readily filled. When the UV light is switched off, the MSP reassembles and the original properties are restored. The introduction of CNCs into the MSP matrix leads to a significant increase of the stiffness and strength, from 52 and 1.7 MPa for the neat polymer to 135 and 5.6 MPa upon introduction of 10% w/w CNCs. The Zn2+ ions bind to the CNCs which means the metal:ligand ratio of the MSP must be adjusted accordingly. In nanocomposites thus made, deliberately introduced defects can be efficiently... |
Databáze: | OpenAIRE |
Externí odkaz: |