Entropy-Based Parameter Estimation for the Four-Parameter Exponential Gamma Distribution

Autor: Xiaoyan Song, Songbai Song, Yan Kang
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Entropy; Volume 19; Issue 5; Pages: 189
Entropy, Vol 19, Iss 5, p 189 (2017)
ISSN: 1099-4300
DOI: 10.3390/e19050189
Popis: Two methods based on the principle of maximum entropy (POME), the ordinary entropy method (ENT) and the parameter space expansion method (PSEM), are developed for estimating the parameters of a four-parameter exponential gamma distribution. Using six data sets for annual precipitation at the Weihe River basin in China, the PSEM was applied for estimating parameters for the four-parameter exponential gamma distribution and was compared to the methods of moments (MOM) and of maximum likelihood estimation (MLE). It is shown that PSEM enables the four-parameter exponential distribution to fit the data well, and can further improve the estimation.
Databáze: OpenAIRE