Energy rebound as a potential threat to a low-carbon future: findings from a new exergy-based national-level rebound approach
Autor: | Timothy J. Foxon, John Barrett, Matthew Kuperus Heun, Julia K. Steinberger, Harry Saunders, Paul E. Brockway, Steve Sorrell |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Exergy
Control and Optimization Natural resource economics 020209 energy Energy Engineering and Power Technology 02 engineering and technology Rebound effect (conservation) constant elasticity of substitution (CES) function energy rebound 7. Clean energy lcsh:Technology Energy policy HC0079.E5 aggregate production function (APF) energy efficiency exergy efficiency exergy macroeconomic rebound energy policy 0202 electrical engineering electronic engineering information engineering Economics Electrical and Electronic Engineering Engineering (miscellaneous) Renewable Energy Sustainability and the Environment business.industry lcsh:T Energy consumption Renewable energy Economy 13. Climate action Greenhouse gas Exergy efficiency business Energy (miscellaneous) Efficient energy use |
Zdroj: | Energies, Vol 10, Iss 1, p 51 (2017) Energies; Volume 10; Issue 1; Pages: 51 |
ISSN: | 1996-1073 |
Popis: | 150 years ago, Stanley Jevons introduced the concept of energy rebound: that anticipated energy efficiency savings may be “taken back” by behavioural responses. This is an important issue today because, if energy rebound is significant, this would hamper the effectiveness of energy efficiency policies aimed at reducing energy use and associated carbon emissions. However, empirical studies which estimate national energy rebound are rare and, perhaps as a result, rebound is largely ignored in energy-economy models and associated policy. A significant difficulty lies in the components of energy rebound assessed in empirical studies: most examine direct and indirect rebound in the static economy, excluding potentially significant rebound of the longer term structural response of the national economy. In response, we develop a novel exergy-based approach to estimate national energy rebound for the UK and US (1980–2010) and China (1981–2010). Exergy—as “available energy”—allows a consistent, thermodynamic-based metric for national-level energy efficiency. We find large energy rebound in China, suggesting that improvements in China’s energy efficiency may be associated with increased energy consumption (“backfire”). Conversely, we find much lower (partial) energy rebound for the case of the UK and US. These findings support the hypothesis that producer-sided economies (such as China) may exhibit large energy rebound, reducing the effectiveness of energy efficiency, unless other policy measures (e.g., carbon taxes) are implemented. It also raises the prospect we need to deploy renewable energy sources faster than currently planned, if (due to rebound) energy efficiency policies cannot deliver the scale of energy reduction envisaged to meet climate targets. |
Databáze: | OpenAIRE |
Externí odkaz: |