Nanoscale tunnel field-effect transistor based on a complex-oxide lateral heterostructure
Autor: | A. Müller, C. Şahin, M.Z. Minhas, B. Fuhrmann, M.E. Flatté, G. Schmidt |
---|---|
Přispěvatelé: | Semiconductor Nanostructures and Impurities, Photonics and Semiconductor Nanophysics |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
Condensed Matter - Mesoscale and Nanoscale Physics Condensed matter physics Transconductance Transistor FOS: Physical sciences General Physics and Astronomy Heterojunction Charge (physics) 02 engineering and technology 021001 nanoscience & nanotechnology Tunnel field-effect transistor Condensed Matter::Mesoscopic Systems and Quantum Hall Effect 01 natural sciences 7. Clean energy law.invention Condensed Matter::Materials Science law Mesoscale and Nanoscale Physics (cond-mat.mes-hall) 0103 physical sciences 010306 general physics 0210 nano-technology Fermi gas Nanoscopic scale Quantum tunnelling |
Zdroj: | Physical Review Applied, 11(6):064026. American Physical Society |
ISSN: | 2331-7043 |
Popis: | We demonstrate a tunnel field effect transistor based on a lateral heterostructure patterned from an $\mathrm{LaAlO_3/SrTiO_3}$ electron gas. Charge is injected by tunneling from the $\mathrm{LaAlO_3}$/$\mathrm{SrTiO_3}$ contacts and the current through a narrow channel of insulating $\mathrm{SrTiO_3}$ is controlled via an electrostatic side gate. Drain-source I/V-curves have been measured at low and elevated temperatures. The transistor shows strong electric-field and temperature-dependent behaviour with a steep sub-threshold slope %of up to as small as $10\:\mathrm{mV/decade}$ and a transconductance as high as $g_m\approx 22 \: \mathrm{\mu A/V}$. A fully consistent transport model for the drain-source tunneling reproduces the measured steep sub-threshold slope. Comment: 20 pages, 6 figures, Supplementary material: 4 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: |