Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages
Autor: | Svantje Tauber, Christian Seebacher, Jennifer Polzer, Cora S. Thiel, Rainer Uhl, Srujana Neelam, Howard G. Levine, Beatrice A. Lauber, Ye Zhang, Oliver Ullrich |
---|---|
Přispěvatelé: | University of Zurich |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Cytoplasm
Microscope 10017 Institute of Anatomy 1607 Spectroscopy Monocytes law.invention lcsh:Chemistry chemistry.chemical_compound law Fluorescence microscope Cytoskeleton lcsh:QH301-705.5 Spectroscopy Microscopy Confocal cytoskeleton General Medicine Computer Science Applications Actin Cytoskeleton 10076 Center for Integrative Human Physiology 1606 Physical and Theoretical Chemistry 1503 Catalysis Confocal 610 Medicine & health Article Catalysis Cell Line Inorganic Chemistry immune cells Live cell imaging 1312 Molecular Biology 1706 Computer Science Applications Humans Physical and Theoretical Chemistry Molecular Biology Cell Nucleus Weightlessness 1604 Inorganic Chemistry Macrophages Organic Chemistry nucleus Space Flight Actin cytoskeleton microgravity Actins Calcein live cell imaging suborbital rocket lcsh:Biology (General) lcsh:QD1-999 Microscopy Fluorescence chemistry Biophysics 570 Life sciences biology Lysosomes 1605 Organic Chemistry |
Zdroj: | International Journal of Molecular Sciences Volume 20 Issue 10 International Journal of Molecular Sciences, Vol 20, Iss 10, p 2402 (2019) |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms20102402 |
Popis: | The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10&minus 4 to 10&minus 5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4&ndash 19 s microgravity, and adapted subsequently until 126&ndash 151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |