Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages

Autor: Svantje Tauber, Christian Seebacher, Jennifer Polzer, Cora S. Thiel, Rainer Uhl, Srujana Neelam, Howard G. Levine, Beatrice A. Lauber, Ye Zhang, Oliver Ullrich
Přispěvatelé: University of Zurich
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Cytoplasm
Microscope
10017 Institute of Anatomy
1607 Spectroscopy
Monocytes
law.invention
lcsh:Chemistry
chemistry.chemical_compound
law
Fluorescence microscope
Cytoskeleton
lcsh:QH301-705.5
Spectroscopy
Microscopy
Confocal

cytoskeleton
General Medicine
Computer Science Applications
Actin Cytoskeleton
10076 Center for Integrative Human Physiology
1606 Physical and Theoretical Chemistry
1503 Catalysis
Confocal
610 Medicine & health
Article
Catalysis
Cell Line
Inorganic Chemistry
immune cells
Live cell imaging
1312 Molecular Biology
1706 Computer Science Applications
Humans
Physical and Theoretical Chemistry
Molecular Biology
Cell Nucleus
Weightlessness
1604 Inorganic Chemistry
Macrophages
Organic Chemistry
nucleus
Space Flight
Actin cytoskeleton
microgravity
Actins
Calcein
live cell imaging
suborbital rocket
lcsh:Biology (General)
lcsh:QD1-999
Microscopy
Fluorescence

chemistry
Biophysics
570 Life sciences
biology
Lysosomes
1605 Organic Chemistry
Zdroj: International Journal of Molecular Sciences
Volume 20
Issue 10
International Journal of Molecular Sciences, Vol 20, Iss 10, p 2402 (2019)
ISSN: 1422-0067
DOI: 10.3390/ijms20102402
Popis: The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10&minus
4 to 10&minus
5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4&ndash
19 s microgravity, and adapted subsequently until 126&ndash
151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje