Monte Carlo study of the two-dimensional kinetic Blume-Capel model in a quenched random crystal field
Autor: | Nikolaos G. Fytas, Alexandros Vasilopoulos, Erol Vatansever, Zeynep Demir Vatansever |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Phase transition Field (physics) Statistical Mechanics (cond-mat.stat-mech) Monte Carlo method Non-equilibrium thermodynamics FOS: Physical sciences Renormalization group Universality (dynamical systems) Condensed Matter::Statistical Mechanics Ising model Statistical physics Scaling Condensed Matter - Statistical Mechanics |
Zdroj: | Physical review. E. 104(2-1) |
ISSN: | 2470-0053 |
Popis: | We investigate by means of Monte Carlo simulations the dynamic phase transition of the two-dimensional kinetic Blume-Capel model under a periodically oscillating magnetic field in the presence of a quenched random crystal-field coupling. We analyze the universality principles of this dynamic transition for various values of the crystal-field coupling at the originally second-order regime of the corresponding equilibrium phase diagram of the model. A detailed finite-size scaling analysis indicates that the observed nonequilibrium phase transition belongs to the universality class of the equilibrium Ising ferromagnet with additional logarithmic corrections in the scaling behavior of the heat capacity. Our results are in agreement with earlier works on kinetic Ising models. Comment: 25 pages (APS preprint style), 13 figures, 1 table |
Databáze: | OpenAIRE |
Externí odkaz: |