Mean field games with congestion

Autor: Alessio Porretta, Yves Achdou
Přispěvatelé: Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Matematica [Roma II] (DIPMAT), Università degli Studi di Roma Tor Vergata [Roma], ANR-16-CE40-0015,MFG,Jeux Champs Moyen(2016), ANR-12-MONU-0013,ISOTACE,Systemes d'Interactions, Transport Optimal, Applications a la simulation en Economie.(2012)
Rok vydání: 2018
Předmět:
Zdroj: Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 35:443-480
ISSN: 1873-1430
0294-1449
DOI: 10.1016/j.anihpc.2017.06.001
Popis: We consider a class of systems of time dependent partial differential equations which arise in mean field type models with congestion. The systems couple a backward viscous Hamilton–Jacobi equation and a forward Kolmogorov equation both posed in ( 0 , T ) × ( R N / Z N ) . Because of congestion and by contrast with simpler cases, the latter system can never be seen as the optimality conditions of an optimal control problem driven by a partial differential equation. The Hamiltonian vanishes as the density tends to +∞ and may not even be defined in the regions where the density is zero. After giving a suitable definition of weak solutions, we prove the existence and uniqueness results of the latter under rather general assumptions. No restriction is made on the horizon T.
Databáze: OpenAIRE