Windings of planar stable processes

Autor: Doney, Ron A., Vakeroudis, Stavros
Přispěvatelé: Department of Mathematics [Manchester] (School of Mathematics), University of Manchester [Manchester], Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Popis: Using a generalization of the skew-product representation of planar Brownian motion and the analogue of Spitzer's celebrated asymptotic Theorem for stable processes due to Bertoin and Werner, for which we provide a new easy proof, we obtain some limit Theorems for the exit time from a cone of stable processes of index $\alpha\in(0,2)$. We also study the case $t\rightarrow0$ and we prove some Laws of the Iterated Logarithm (LIL) for the (well-defined) winding process associated to our planar stable process.
Databáze: OpenAIRE