Variation of the holomorphic determinant bundle
Autor: | Julien Grivaux |
---|---|
Přispěvatelé: | Laboratoire d'Analyse, Topologie, Probabilités (LATP), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Pure mathematics
General Mathematics Holomorphic function 01 natural sciences Mathematics - Algebraic Geometry Deligne cohomology Mathematics::Algebraic Geometry Mathematics::K-Theory and Homology FOS: Mathematics 0101 mathematics Invariant (mathematics) Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry Holomorphic vector bundle Mathematics 14F43 14C40 32C35 58J52 Mathematics::Complex Variables 010102 general mathematics Grothendieck–Riemann–Roch theorem holomorphic determinant bundle Cohomology Grothendieck-Riemann-Roch theorem Bundle Mathematics::Differential Geometry [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] |
Zdroj: | Mathematical Research Letters Mathematical Research Letters, 2013, 20 (6), pp.1091--1101. ⟨10.4310/MRL.2013.v20.n6.a8⟩ |
ISSN: | 1073-2780 1945-001X |
DOI: | 10.4310/MRL.2013.v20.n6.a8⟩ |
Popis: | In this paper, we prove that the Grothendieck-Riemann-Roch formula in Deligne cohomology computing the determinant of the cohomology of a holomorphic vector bundle on the fibers of a proper submersion between abstract complex manifolds is invariant by deformation of the bundle. Comment: Comments are welcome |
Databáze: | OpenAIRE |
Externí odkaz: |