Gap vertex-distinguishing edge colorings of graphs

Autor: Eric Duchêne, Hamamache Kheddouci, Mohammed Amin Tahraoui
Přispěvatelé: Graphes, Algorithmes et Multi-Agents (GrAMA), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Graphes, AlgOrithmes et AppLications (GOAL)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Discrete Mathematics
Discrete Mathematics, Elsevier, 2012, 20, Volume 312, pp.3011-3025
ISSN: 0012-365X
Popis: In this paper, we study a new coloring parameter of graphs called the gap vertex-distinguishing edge coloring . It consists in an edge-coloring of a graph G which induces a vertex distinguishing labeling of G such that the label of each vertex is given by the difference between the highest and the lowest colors of its adjacent edges. The minimum number of colors required for a gap vertex-distinguishing edge coloring of G is called the gap chromatic number of G and is denoted by gap ( G ) . We here study the gap chromatic number for a large set of graphs G of order n and prove that gap ( G ) ∈ { n − 1 , n , n + 1 } .
Databáze: OpenAIRE