Numerical Simulations of Components Produced by Fused Deposition 3D Printing

Autor: Lorenzo Peroni, Martina Scapin
Jazyk: angličtina
Rok vydání: 2021
Předmět:
tensile and bending experimental tests
Technology
transversely isotropic material behavior
Materials science
finite element analyses for structural calculations
3D printing
Bending
Curvature
Article
law.invention
law
Transverse isotropy
Deposition (phase transition)
General Materials Science
Composite material
Finite element analyses for structural calculations
Fused deposition modeling
Nylon reinforced with short fibers
Tensile and bending experimental tests
Transversely isotropic material behavior
Microscopy
QC120-168.85
business.industry
fused deposition modeling
QH201-278.5
Engineering (General). Civil engineering (General)
Finite element method
TK1-9971
Descriptive and experimental mechanics
Electrical engineering. Electronics. Nuclear engineering
TA1-2040
nylon reinforced with short fibers
Material properties
business
Zdroj: Materials
Volume 14
Issue 16
Materials, Vol 14, Iss 4625, p 4625 (2021)
ISSN: 1996-1944
DOI: 10.3390/ma14164625
Popis: Three-dimensional printing technology using fused deposition modeling processes is becoming more and more widespread thanks to the improvements in the mechanical properties of materials with the addition of short fibers into the polymeric filaments. The final mechanical properties of the printed components depend, not only on the properties of the filament, but also on several printing parameters. The main purpose of this study was the development of a tool for designers to predict the real mechanical properties of printed components by performing finite element analyses. Two different materials (nylon reinforced with glass or carbon fibers) were investigated. The experimental identification of the elastic material model parameters was performed by testing printed fully filled dog bone specimens in two different directions. The obtained parameters were used in numerical analyses to predict the mechanical response of simple structures. Blocks of 20 mm × 20 mm × 160 mm were printed in four different percentages of a triangular infill pattern. Experimental and numerical four-point bending tests were performed, and the results were compared in terms of load versus curvature. The analysis of the results demonstrated that the purely elastic transversely isotropic material model is adequate for predicting behavior, at least before nonlinearities occur.
Databáze: OpenAIRE