Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases
Autor: | Wlodzimierz J. Krzyzosiak, Adam Ciesiolka, Katarzyna Bilinska, Julia Starega-Roslan, Magdalena Jazurek |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Proteomics Quantitative proteomics CRISPR-Associated Proteins RNA-binding protein Computational biology Biology Mass Spectrometry 03 medical and health sciences 0302 clinical medicine Bacterial Proteins Endoribonucleases Genetics Animals Humans Clustered Regularly Interspaced Short Palindromic Repeats Genetic Predisposition to Disease RNA Antisense Survey and Summary Genetic Association Studies DNA Repeat Expansion SELEX Aptamer Technique RNA RNA-Binding Proteins Reproducibility of Results Translation (biology) Aptamers Nucleotide 030104 developmental biology RNA splicing Trinucleotide repeat expansion 030217 neurology & neurosurgery |
Zdroj: | Nucleic Acids Research |
ISSN: | 1362-4962 0305-1048 |
Popis: | RNA-protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA-protein networks. Extensive efforts have been made to purify in vivo-assembled RNA-protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA-protein interactions that result in the development of many neurological diseases. |
Databáze: | OpenAIRE |
Externí odkaz: |