The Lagrange-D’Alembert-Poincaré equations and integrability for the Euler’s disk

Autor: Viviana Alejandra Díaz, Hernán Cendra
Rok vydání: 2007
Předmět:
Zdroj: Regular and Chaotic Dynamics. 12:56-67
ISSN: 1468-4845
1560-3547
DOI: 10.1134/s1560354707010054
Popis: Nonholonomic systems are described by the Lagrange-D'Alembert's principle. The presence of symmetry leads, upon the choice of an arbitrary principal connection, to a reduced D'Alembert's principle and to the Lagrange-D'Alembert-Poincaré reduced equations. The case of rolling constraints has a long history and it has been the purpose of many works in recent times. In this paper we find reduced equations for the case of a thick disk rolling on a rough surface, sometimes called Euler's disk, using a 3-dimensional abelian group of symmetry. We also show how the reduced system can be transformed into a single second order equation, which is an hypergeometric equation. Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina Fil: Diaz, Viviana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Databáze: OpenAIRE