Uniform Generators, Symbolic Extensions with an Embedding, and Structure of Periodic Orbits
Autor: | Tomasz Downarowicz, David Burguet |
---|---|
Přispěvatelé: | Burguet, David |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Partial differential equation 010102 general mathematics [MATH] Mathematics [math] Dynamical Systems (math.DS) 01 natural sciences 010101 applied mathematics If and only if Aperiodic graph Ordinary differential equation FOS: Mathematics Equivariant map Embedding Entropy (information theory) Affine transformation Mathematics - Dynamical Systems 0101 mathematics Analysis Mathematics |
Zdroj: | Journal of Dynamics and Differential Equations. 31:815-852 |
ISSN: | 1572-9222 1040-7294 |
Popis: | For a topological dynamical system $(X, T)$ we define a uniform generator as a finite measurable partition such that the symmetric cylinder sets in the generated process shrink in diameter uniformly to zero. The problem of existence and optimal cardinality of uniform generators has lead us to new challenges in the theory of symbolic extensions. At the beginning we show that uniform generators can be identified with so-called symbolic extensions with an embedding, i.e., symbolic extensions admitting an equivariant measurable selector from preimages. From here we focus on such extensions and we strive to characterize the collection of the corresponding extension entropy functions on invariant measures. For aperiodic zero-dimensional systems we show that this collection coincides with that of extension entropy functions in arbitrary symbolic extensions, which, by the general theory of symbolic extensions, is known to coincide with the collection of all affine superenvelopes of the entropy structure of the system. In particular, we recover, after [Bu16], that an aperiodic zero-dimensional system is asymptotically h- expansive if and only if it admits an isomorphic symbolic extension. Next we pass to systems with periodic points, and we introduce the notion of a period tail structure, which captures the local growth rate of periodic orbits. Finally, we succeed in precisely identifying the wanted collection of extension entropy functions in symbolic extensions with an embedding: these are all the affine superenvelopes of the usual entropy structure which lie above certain threshold function determined by the period tail structure. This characterization allows us, among other things, to give estimates (and in examples to compute precisely) the optimal cardinality of a uniform generator. Comment: 44 Pages |
Databáze: | OpenAIRE |
Externí odkaz: |