Harnessing type I CRISPR–Cas systems for genome engineering in human cells

Autor: Peter Cameron, Mckenzi S. Toh, Steven B. Kanner, John van der Oost, Scott Gradia, Bastien Vidal, Carolyn Williams, Samuel H. Sternberg, Lynda M. Banh, Alexandra M. Lied, Paul Daniel Donohoue, David B. Nyer, Chris R. Fuller, B. Kohrs, Mary M. Coons, Matthew J. Irby, Chun Han Lin, Leslie S. Edwards, Arthur L.G. Owen, Tim Künne, Tomer Rotstein, Sanne E. Klompe, Rachel Kennedy, Euan M. Slorach, Andrew May, Stan J. J. Brouns, Stephen C. Smith
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nature Biotechnology
Nature Biotechnology, 37, 1471-1477
Nature Biotechnology 37 (2019)
ISSN: 1087-0156
DOI: 10.1038/s41587-019-0310-0
Popis: Type I CRISPR–Cas systems are the most abundant adaptive immune systems in bacteria and archaea1,2. Target interference relies on a multi-subunit, RNA-guided complex called Cascade3,4, which recruits a trans-acting helicase-nuclease, Cas3, for target degradation5–7. Type I systems have rarely been used for eukaryotic genome engineering applications owing to the relative difficulty of heterologous expression of the multicomponent Cascade complex. Here, we fuse Cascade to the dimerization-dependent, non-specific FokI nuclease domain8–11 and achieve RNA-guided gene editing in multiple human cell lines with high specificity and efficiencies of up to ~50%. FokI–Cascade can be reconstituted via an optimized two-component expression system encoding the CRISPR-associated (Cas) proteins on a single polycistronic vector and the guide RNA (gRNA) on a separate plasmid. Expression of the full Cascade–Cas3 complex in human cells resulted in targeted deletions of up to ~200 kb in length. Our work demonstrates that highly abundant, previously untapped type I CRISPR–Cas systems can be harnessed for genome engineering applications in eukaryotic cells. A type I CRISPR–Cas system, rather than the conventional type II CRISPR systems, is adapted for gene editing by fusing Cascade to the FokI nuclease domain.
Databáze: OpenAIRE