Nuclear DYW-Type PPR Gene Families Diversify with Increasing RNA Editing Frequencies in Liverwort and Moss Mitochondria

Autor: Henning Lenz, Volker Knoop, Milena Groth-Malonek, Ute Volkmar, Mareike Rüdinger
Rok vydání: 2012
Předmět:
Zdroj: Journal of Molecular Evolution. 74:37-51
ISSN: 1432-1432
0022-2844
DOI: 10.1007/s00239-012-9486-3
Popis: RNA editing in mitochondria and chloroplasts of land plants alters transcript sequences by site-specific conversions of cytidines into uridines. RNA editing frequencies vary extremely between land plant clades, ranging from zero in some liverworts to more than 2,000 sites in lycophytes. Unique pentatricopeptide repeat (PPR) proteins with variable domain extension (E/E+/DYW) have recently been identified as specific editing site recognition factors in model plants. The distinctive functions of these PPR protein domain additions have remained unclear, although deaminase function has been proposed for the DYW domain. To shed light on diversity of RNA editing and DYW proteins at the origin of land plant evolution, we investigated editing patterns of the mitochondrial nad5, nad4, and nad2 genes in a wide sampling of more than 100 liverworts and mosses using the recently developed PREPACT program (www.prepact.de) and exemplarily confirmed predicted RNA editing sites in selected taxa. Extreme variability in RNA editing frequency is seen both in liverworts and mosses. Only few editings exist in the liverwort Lejeunea cavifolia or the moss Pogonatum urnigerum whereas up to 20% of cytidines are edited in the liverwort Haplomitrium mnioides or the moss Takakia lepidozioides. Interestingly, the latter are taxa that branch very early within their respective clades. Amplicons targeting the E/E+/DYW domains and subsequent random clone sequencing show DYW domains among bryophytes to be highly conserved in comparison with their angiosperm counterparts and to correlate well with RNA editing frequencies regarding their diversities. We propose that DYW proteins are the key players of RNA editing at the origin of land plants.
Databáze: OpenAIRE