Mechanisms of a rectifying TiN gate contact for AlGaN/GaN HEMTs on silicon substrate

Autor: Maghnia Mattalah, Brahim Benbakhti, Nour Eddine Bourzgui, Hassane Ouazzani Chahdi, J.-C. Gerbedoen, Abdelatif Jaouad, Ali Soltani
Přispěvatelé: Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), University Saad Dahleb, Partenaires INRAE, Puissance - IEMN (PUISSANCE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), French National Research Agency (ANR) (ANR-15-CE09-0021 CLEANING), Renatech Network, ANR-15-CE09-0019,CLEANING,Capteurs de gaz muLtifonctions pour anti-pollution A base de Nitrure de Gallium pour application automobile(2015)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology, Institute of Electrical and Electronics Engineers, 2020, 19, pp.682-688. ⟨10.1109/TNANO.2020.3019916⟩
IEEE Transactions on Nanotechnology, 2020, 19, pp.682-688. ⟨10.1109/TNANO.2020.3019916⟩
ISSN: 1536-125X
Popis: Rectifying Titanium Nitride (TiN) gate contact technology is developed for AlGaN $/$ GaN based micro and nanometer HEMTs. A high compressive strain occurring in thinner TiN films (ranging from 5 nm to 60 nm), deposited by sputtering, leads to a reduction in tensile strain at the surface of AlGaN barrier. The diminution in tensile strain forms a pseudo- $p$ -type layer (diode-like). This strain reduction has no effect on the bandgap of the AlGaN barrier layer, allowing the gate to withstand a reverse gate bias larger than 100 V. Characterization using the high-resolution transmission electron microscopy combined with the X-ray photoelectron spectroscopy reveals a good TiN $/$ AlGaN interface quality and no diffusion of TiN into AlGaN. The effective energy barrier of the rectifying nanoscale TiN gate contact has a relatively large height of 1.1 eV associated with an ideality factor of 1.4. A dramatic drop of the reverse-bias leakage current down to 11 pA $/$ mm is measured at −30 V. In addition, electrical measurements show very low gate and drain lag effects of 4.2 ${\%}$ and 6.7 ${\%}$ , respectively.
Databáze: OpenAIRE