Activation of the ATF6 (Activating Transcription Factor 6) Signaling Pathway in Neurons Improves Outcome After Cardiac Arrest in Mice
Autor: | Qiang Zhao, Shu Yu, Yuntian Shen, Zhuoran Wang, Ran Li, Huaxin Sheng, Wei Yang |
---|---|
Rok vydání: | 2021 |
Předmět: |
Resuscitation
Activating transcription factor Mice Transgenic transgenic mice Neuroprotection Resuscitation Science 03 medical and health sciences 0302 clinical medicine Downregulation and upregulation Ischemia Medicine Animals RNA‐Seq Gene Knock-In Techniques 030304 developmental biology Original Research Neurons 0303 health sciences Behavior Animal ATF6 business.industry Endoplasmic reticulum Ubiquitination Brain brain ischemia Cell biology Activating Transcription Factor 6 Heart Arrest Mice Inbred C57BL Disease Models Animal Proteostasis Neuroprotective Agents ER‐associated degradation Reperfusion Injury Unfolded protein response Unfolded Protein Response neuroprotection Signal transduction Cardiology and Cardiovascular Medicine business ER stress 030217 neurology & neurosurgery Basic Science Research Signal Transduction |
Zdroj: | Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease |
ISSN: | 2047-9980 |
Popis: | Background Ischemia/reperfusion injury impairs proteostasis, and triggers adaptive cellular responses, such as the unfolded protein response (UPR), which functions to restore endoplasmic reticulum homeostasis. After cardiac arrest (CA) and resuscitation, the UPR is activated in various organs including the brain. However, the role of the UPR in CA has remained largely unknown. Here we aimed to investigate effects of activation of the ATF6 (activating transcription factor 6) UPR branch in CA. Methods and Results Conditional and inducible sATF6‐KI (short‐form ATF6 knock‐in) mice and a selective ATF6 pathway activator 147 were used. CA was induced in mice by KCl injection, followed by cardiopulmonary resuscitation. We first found that neurologic function was significantly improved, and neuronal damage was mitigated after the ATF6 pathway was activated in neurons of sATF6‐KI mice subjected to CA/cardiopulmonary resuscitation. Further RNA sequencing analysis indicated that such beneficial effects were likely attributable to increased expression of pro‐proteostatic genes regulated by ATF6. Especially, key components of the endoplasmic reticulum–associated degradation process, which clears potentially toxic unfolded/misfolded proteins in the endoplasmic reticulum, were upregulated in the sATF6‐KI brain. Accordingly, the CA‐induced increase in K48‐linked polyubiquitin in the brain was higher in sATF6‐KI mice relative to control mice. Finally, CA outcome, including the survival rate, was significantly improved in mice treated with compound 147. Conclusions This is the first experimental study to determine the role of the ATF6 UPR branch in CA outcome. Our data indicate that the ATF6 UPR branch is a prosurvival pathway and may be considered as a therapeutic target for CA. |
Databáze: | OpenAIRE |
Externí odkaz: |