Lagrangian Floer homology of a pair of real forms in Hermitian symmetric spaces of compact type

Autor: Takashi Sakai, Hiroshi Iriyeh, Hiroyuki Tasaki
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: J. Math. Soc. Japan 65, no. 4 (2013), 1135-1151
ISSN: 0025-5645
Popis: In this paper we calculate the Lagrangian Floer homology $HF(L_0, L_1 : {\mathbb Z}_2)$ of a pair of real forms $(L_0,L_1)$ in a monotone Hermitian symmetric space $M$ of compact type in the case where $L_0$ is not necessarily congruent to $L_1$. In particular, we have a generalization of the Arnold-Givental inequality in the case where $M$ is irreducible. As its application, we prove that the totally geodesic Lagrangian sphere in the complex hyperquadric is globally volume minimizing under Hamiltonian deformations.
Comment: 13 pages, to appear in Journal of the Mathematical Society of Japan
Databáze: OpenAIRE