One-dimensional extended states in partially disordered planar systems
Autor: | Shi-Jie Xiong, S. N. Evangelou, Eleftherios N. Economou |
---|---|
Rok vydání: | 1999 |
Předmět: |
Physics
Condensed matter physics FOS: Physical sciences General Physics and Astronomy Duality (optimization) Disordered Systems and Neural Networks (cond-mat.dis-nn) Condensed Matter - Disordered Systems and Neural Networks Square (algebra) Magnetic field Planar Phase (matter) Continuum (set theory) Scaling Energy (signal processing) |
Zdroj: | Physics Letters A. 253:322-326 |
ISSN: | 0375-9601 |
DOI: | 10.1016/s0375-9601(99)00089-4 |
Popis: | We obtain analytically a continuum of one-dimensional ballistic extended states in a two-dimensional disordered system, which consists of compactly coupled random and pure square lattices. The extended states give a marginal metallic phase with finite conductivity $\sigma_{0}=2e^2/h$ in a wide energy range, whose boundaries define the mobility edges of a first-order metal-insulator transition. We show current-voltage duality, $H_{\parallel}/T$ scaling of the conductivity in parallel magnetic field $H_{\parallel}$ and non-Fermi liquid properties when long-range electron-electron interactions are included. Comment: 4 pages, revtex file, 3 postscript files |
Databáze: | OpenAIRE |
Externí odkaz: |