Macroscopic Model of Two-Phase Compressible Flow in Double Porosity Media

Autor: A. S. Berdyshev, Mikhail Panfilov, Zh. D. Baishemirov
Přispěvatelé: Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Кazakh National Pedagogical University of Abay, Institute of Information and Computational Technologies CS MES RK, (CS MES RK), This work was supported by the Scientific Committee of the Ministry of Education and Science of the Republic of Kazakhstan: grant n° AP05132680
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Fluid Dynamics / Izvestiya Akademii Nauk-Mekhanika Zhidkosti i Gaza
Fluid Dynamics / Izvestiya Akademii Nauk-Mekhanika Zhidkosti i Gaza, MAIK Nauka/Interperiodica (МАИК Наука/Интерпериодика), 2020, 55 (7), pp.936-951. ⟨10.1134/s001546282007006x⟩
ISSN: 0015-4628
1573-8507
DOI: 10.1134/s001546282007006x⟩
Popis: International audience; A macroscopic model of two-phase flow of compressible liquids in a compressible double porosity medium is developed and used to analyse various qualitative mechanisms of the occurrence of memory (delay). The two main mechanisms are non-instantaneous capillary redistribution of liquids, and non-instantaneous relaxation of pressure. In addition, cross effects of memory arise, caused by asymmetric extrusion of liquids from pores due to phase expansion and pore compaction, as well as nonlinear overlap of compressibility and capillarity (non-linear extrusion). To construct the model, the asymptotic method of two-scale averaging in the variational formulation is applied. Complete averaging has been achieved due to the separation of nonlocality and nonlinearity at different levels of the asymptotic expansion. All delay times are explicitly defined as functions of saturation and pressure.
Databáze: OpenAIRE