Distinct Amino Acids in the C-Linker Domain of the Arabidopsis K+ Channel KAT2 Determine Its Subcellular Localization and Activity at the Plasma Membrane
Autor: | Alain Chavanieu, Carine Alcon, Hervé Sentenac, Manuel Nieves-Cordones, Linda Jeanguenin, Isabelle Gaillard, Isabelle Chérel, Sebastien Estaran, Wojciech Szponarski, Sabine Zimmermann |
---|---|
Přispěvatelé: | Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Alfonso Martin Escudero Foundation, Marie Curie Programm [FP7IEF] |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
0106 biological sciences
Val381 and Ser382 312TVRAASEFA320 Physiology Protein subunit AtKC1 CNBD Arabidopsis KAT2 Plant Science Biology plasma membrane 01 natural sciences 03 medical and health sciences Protein structure Genetics [SDV.BV]Life Sciences [q-bio]/Vegetal Biology Shaker 030304 developmental biology cyclic-nucleotide-binding domain 0303 health sciences C-linker KAT2 C-linker/CNBD biology.organism_classification Transmembrane protein Transport protein Transmembrane domain Biochemistry Cyclic nucleotide-binding domain Biophysics 010606 plant biology & botany Shaker K+ channels |
Zdroj: | Plant Physiology Plant Physiology, American Society of Plant Biologists, 2014, 164 (3), pp.1415-29. ⟨10.1104/pp.113.229757⟩ |
ISSN: | 0032-0889 1532-2548 |
Popis: | Shaker K+ channels form the major K+ conductance of the plasma membrane in plants. They are composed of four subunits arranged around a central ion-conducting pore. The intracellular carboxy-terminal region of each subunit contains several regulatory elements, including a C-linker region and a cyclic nucleotide-binding domain (CNBD). The C-linker is the first domain present downstream of the sixth transmembrane segment and connects the CNBD to the transmembrane core. With the aim of identifying the role of the C-linker in the Shaker channel properties, we performed subdomain swapping between the C-linker of two Arabidopsis (Arabidopsis thaliana) Shaker subunits, K+ channel in Arabidopsis thaliana2 (KAT2) and Arabidopsis thaliana K+ rectifying channel1 (AtKC1). These two subunits contribute to K+ transport in planta by forming heteromeric channels with other Shaker subunits. However, they display contrasting behavior when expressed in tobacco mesophyll protoplasts: KAT2 forms homotetrameric channels active at the plasma membrane, whereas AtKC1 is retained in the endoplasmic reticulum when expressed alone. The resulting chimeric/mutated constructs were analyzed for subcellular localization and functionally characterized. We identified two contiguous amino acids, valine-381 and serine-382, located in the C-linker carboxy-terminal end, which prevent KAT2 surface expression when mutated into the equivalent residues from AtKC1. Moreover, we demonstrated that the nine-amino acid stretch 312TVRAASEFA320 that composes the first C-linker α-helix located just below the pore is a crucial determinant of KAT2 channel activity. A KAT2 C-linker/CNBD three-dimensional model, based on animal HCN (for Hyperpolarization-activated, cyclic nucleotide-gated K+) channels as structure templates, has been built and used to discuss the role of the C-linker in plant Shaker inward channel structure and function. |
Databáze: | OpenAIRE |
Externí odkaz: |