Intrinsic Finite Element Methods for the Computation of Fluxes for Poisson's Equation

Autor: C. Simian, Philippe G. Ciarlet, Patrick Ciarlet, Stefan A. Sauter
Přispěvatelé: City University of Hong Kong [Hong Kong] (CUHK), Propagation des Ondes : Étude Mathématique et Simulation (POEMS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Appliquées (UMA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS), Institut für Mathematik [Zürich], Universität Zürich [Zürich] = University of Zurich (UZH), Department of Computer Science, University of Chicago, University of Chicago, Department of Mathematics, City University of Hong Kong, University of Zurich, Ciarlet, Patrick
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Numerische Mathematik
Numerische Mathematik, 2015, pp.30. ⟨10.1007/s00211-015-0730-9⟩
Numerische Mathematik, Springer Verlag, 2015, pp.30. ⟨10.1007/s00211-015-0730-9⟩
ISSN: 0029-599X
0945-3245
DOI: 10.1007/s00211-015-0730-9⟩
Popis: International audience; In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved.
Databáze: OpenAIRE