Intrinsic Finite Element Methods for the Computation of Fluxes for Poisson's Equation
Autor: | C. Simian, Philippe G. Ciarlet, Patrick Ciarlet, Stefan A. Sauter |
---|---|
Přispěvatelé: | City University of Hong Kong [Hong Kong] (CUHK), Propagation des Ondes : Étude Mathématique et Simulation (POEMS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Appliquées (UMA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS), Institut für Mathematik [Zürich], Universität Zürich [Zürich] = University of Zurich (UZH), Department of Computer Science, University of Chicago, University of Chicago, Department of Mathematics, City University of Hong Kong, University of Zurich, Ciarlet, Patrick |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Lemma (mathematics)
Applied Mathematics Computation Numerical analysis 010102 general mathematics Mathematical analysis Mixed finite element method intrinsic formulation 01 natural sciences Potential theory Finite element method 2000 Mathematics Subject Classification: 65N30 010101 applied mathematics 10123 Institute of Mathematics Computational Mathematics 510 Mathematics elliptic boundary value problems 2604 Applied Mathematics conforming and non-conforming finite element spaces 0101 mathematics Poisson's equation 2605 Computational Mathematics [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] Mathematics Extended finite element method |
Zdroj: | Numerische Mathematik Numerische Mathematik, 2015, pp.30. ⟨10.1007/s00211-015-0730-9⟩ Numerische Mathematik, Springer Verlag, 2015, pp.30. ⟨10.1007/s00211-015-0730-9⟩ |
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-015-0730-9⟩ |
Popis: | International audience; In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved. |
Databáze: | OpenAIRE |
Externí odkaz: |