Geometric Thermodynamics: Black Holes and the Meaning of the Scalar Curvature
Autor: | Merced Montesinos, Miguel Ángel García-Ariza, Gerardo Francisco Torres del Castillo |
---|---|
Rok vydání: | 2014 |
Předmět: |
High Energy Physics - Theory
Scalar (mathematics) FOS: Physical sciences General Physics and Astronomy lcsh:Astrophysics General Relativity and Quantum Cosmology (gr-qc) General Relativity and Quantum Cosmology Theoretical physics Physics - Chemical Physics lcsh:QB460-466 Ruppeiner’s metrics lcsh:Science Black hole thermodynamics Absolute zero Mathematical Physics Flatness (mathematics) Chemical Physics (physics.chem-ph) Physics black hole thermodynamics Degenerate energy levels Mathematical Physics (math-ph) Thermodynamic system lcsh:QC1-999 Ideal gas phase transitions High Energy Physics - Theory (hep-th) lcsh:Q lcsh:Physics Scalar curvature |
Zdroj: | Entropy Volume 16 Issue 12 Pages 6515-6523 Entropy, Vol 16, Iss 12, Pp 6515-6523 (2014) |
ISSN: | 1099-4300 |
DOI: | 10.3390/e16126515 |
Popis: | In this paper we show that the vanishing of the scalar curvature of Ruppeiner-like metrics does not characterize the ideal gas. Furthermore, we claim through an example that flatness is not a sufficient condition to establish the absence of interactions in the underlying microscopic model of a thermodynamic system, which poses a limitation on the usefulness of Ruppeiner's metric and conjecture. Finally, we address the problem of the choice of coordinates in black hole thermodynamics. We propose an alternative energy representation for Kerr-Newman black holes that mimics fully Weinhold's approach. The corresponding Ruppeiner's metrics become degenerate only at absolute zero and have non-vanishing scalar curvatures. LaTeX file, no figures |
Databáze: | OpenAIRE |
Externí odkaz: |