Reproducibility standards for machine learning in the life sciences

Autor: Benjamin J. Heil, Michael M. Hoffman, Casey S. Greene, Florian Markowetz, Su-In Lee, Stephanie C. Hicks
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nat Methods
Popis: To make machine learning analyses in the life sciences more computationally reproducible, we propose standards based on data, model, and code publication, programming best practices, and workflow automation. By meeting these standards, the community of researchers applying machine learning methods in the life sciences can ensure that their analyses are worthy of trust.
Databáze: OpenAIRE