Nonlinear parsimonious feature selection for the classification of hyperspectral images

Autor: Anthony Zullo, Frédéric Ferraty, Mathieu Fauvel
Přispěvatelé: ProdInra, Migration, Dynamiques Forestières dans l'Espace Rural (DYNAFOR), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, École nationale supérieure agronomique de Toulouse [ENSAT], Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: 6. Workshop on Hyperspectral image and signal processing: evolution in remote sensing
6. Workshop on Hyperspectral image and signal processing: evolution in remote sensing, Jun 2014, Lausanne, Switzerland. 4 p
WHISPERS
Popis: International audience; A nonlinear parsimonious feature selection algorithm is presented in this paper. It is based on a Gaussian mixture model (GMM). GMM are used for classifying hyperspectral images. The algorithm selects iteratively spectral features that maximizes an estimate of the correct classification rate. In order to perform fast in terms of computing time, an efficient implementation is proposed. First, the GMM can be updated when the estimation of the correct classification rate is computed, rather re-estimate the full model. Secondly, using marginalization of the GMM, sub models can be directly obtain from the full model learns with all the spectral features. Experimental results for three hyperspectral data sets show that the method performs very well and is able to extract very few spectral channels.
Databáze: OpenAIRE