Autor: |
Nishtha Phutela, Devanjali Relan, Goldie Gabrani, Ponnurangam Kumaraguru, Mesay Samuel |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Computational Intelligence and Neuroscience. |
ISSN: |
1687-5265 |
DOI: |
10.1155/2022/7607592 |
Popis: |
The early diagnosis of stress symptoms is essential for preventing various mental disorder such as depression. Electroencephalography (EEG) signals are frequently employed in stress detection research and are both inexpensive and noninvasive modality. This paper proposes a stress classification system by utilizing an EEG signal. EEG signals from thirty-five volunteers were analysed which were acquired using four EEG sensors using a commercially available 4-electrode Muse EEG headband. Four movie clips were chosen as stress elicitation material. Two clips were selected to induce stress as it contains emotionally inductive scenes. The other two clips were chosen that do not induce stress as it has many comedy scenes. The recorded signals were then used to build the stress classification model. We compared the Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) for classifying stress and nonstress group. The maximum classification accuracy of 93.17% was achieved using two-layer LSTM architecture. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|