Thirty Years of Genome Engineering in Rice: From Gene Addition to Gene Editing
Autor: | Martine Bes, Murielle Portefaix, Emmanuel Guiderdoni, Delphine Mieulet, Christophe Perin, Donaldo Meynard, Anne Cecile Meunier, Aurore Vernet, Jean-Christophe Breitler |
---|---|
Přispěvatelé: | Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), UMR - Interactions Plantes Microorganismes Environnement (UMR IPME), Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), ANR-11-BTBR-0001,GENIUS,Ingénierie cellulaire : amélioration et innovation technologiques pour les plantes d'une agriculture(2011), ANR-10-LABX-0001,AGRO,Agricultural Sciences for sustainable Development(2010) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Oryza sativa Computational biology Biology 01 natural sciences Genome F30 - Génétique et amélioration des plantes Genome engineering 03 medical and health sciences Genome editing [SDV.BV]Life Sciences [q-bio]/Vegetal Biology Gene Transfert de gène 030304 developmental biology Génie génétique 2. Zero hunger 0303 health sciences genetic engineering Génome gene editing rice Gene targeting food and beverages Genetically modified rice Functional genomics functional genomics 010606 plant biology & botany |
Zdroj: | Annual Plant Reviews Annual Plant Reviews, Wiley Online Library 2020, 3 (1), pp.1-75. ⟨10.1002/9781119312994.apr0662⟩ Annual plant reviews |
DOI: | 10.1002/9781119312994.apr0662⟩ |
Popis: | International audience; Rice, the staple food for more than half of humankind and the model monocot crop, was the first cereal in which efficient gene transfer procedures were implemented: 30 years ago, the first transgenic rice plant was regenerated following direct gene transfer to cell suspension-derived protoplasts. Shortly thereafter, transgenic plants were regenerated from zygotic embryo-derived cells following their subjection to micro-projectile acceleration and Agrobacterium-mediated transfection treatments. The high efficiency of transfer deoxyribonucleic acid (T-DNA) integration in seed embryo-derived cells of rice has allowed the transfer of genes of agronomical relevance and the generation of large collections of insertion lines and has provided a key contribution to deciphering the function of more than 2000 rice genes. The high efficiency of T-DNA integration in seed embryo-derived cells of rice also permitted the first implementation of gene targeting and knock-in (KI) events, relying on the albeit very low natural frequency of homology-directed repair (HDR) in the rice genome. In the late 2000s, the advent of site-directed nucleases (SDNs) that induce either single or double-strand breaks at a high frequency and their rapid application to rice permitted routine targeted mutagenesis, which can be multiplexed to simultaneously alter several targets or create deletions, and base and gene editing (e.g. correction of amino acids). Currently, the challenge remains to attain a high frequency of KI and replacement of long stretches of DNA for protein domain or coding sequence swapping. We present herein a historical perspective of the advances that have been readily implemented to determine the function of rice genes and to manipulate traits of agronomical relevance. Two main bottlenecks remain to be alleviated in rice genomic engineering: the low frequency of HDR and the genotype dependence of gene transfer efficiency. Alleviation of these bottlenecks is needed to reach the potential of intra- and interspecific gene replacement and SDN-mediated multiplex editing of alleles in elite materials, which will assist in the breeding and deployment of rice cultivars embedded in sustainable and climate-smart agricultural practices. |
Databáze: | OpenAIRE |
Externí odkaz: |