Proteoglycans exert a significant effect on human meniscal stiffness through ionic effects
Autor: | Philip Riches, Fahd F. Mahmood, Jon Clarke |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Cartilage
Articular Biophysics Strain (injury) Meniscus (anatomy) 03 medical and health sciences 0302 clinical medicine TA164 medicine Stress relaxation Humans Meniscus Orthopedics and Sports Medicine Mechanical Phenomena biology Chemistry Physiological condition Stiffness 030229 sport sciences medicine.disease Biomechanical Phenomena Preload medicine.anatomical_structure Proteoglycan Permeability (electromagnetism) biology.protein Proteoglycans Stress Mechanical medicine.symptom 030217 neurology & neurosurgery Biomedical engineering |
ISSN: | 0268-0033 |
Popis: | Background: Proteoglycans contribute to mechanical stiffness in articular cartilage, aiding load transmission. The magnitude of the ionic contribution of proteoglycans to the stiffness of human meniscal tissue has not been established. Methods: Thirty-six discs of human meniscal tissue were placed within a custom confined compression chamber and bathed in three solutions of increasing ionic concentration. Following a 0.3 N preload, at equilibrium, a 10% ramp compressive strain was followed by a 7200 s hold phase. A nonlinear poroviscoelastic model with strain dependent permeability was fitted to resultant stress relaxation curves. All samples were assayed for proteoglycan content. Model parameters were analysed using multivariate analysis of variance whilst proteoglycan content was compared using a univariate analysis of variance model. Findings: A significant difference (p < .05) was observed in the value of the Young's modulus (E) between samples tested in deionised water compared to those tested in solutions of high ionic concentration. No differences were observed in the zero-strain permeability or the exponential strain dependent stiffening coefficient. Proteoglycan content was not found to differ with solution; but was found to be significantly increased in the middle meniscal region of both menisci. Interpretation: Proteoglycans make a significant ionic contribution to mechanical stiffness of the meniscus, increasing it by 58% in the physiological condition. It is therefore critical that meniscal regeneration strategies attempt to recreate the function of proteoglycans to ensure normal meniscal function. |
Databáze: | OpenAIRE |
Externí odkaz: |