Silica deposition on zirconia via room-temperature atomic layer deposition (RT-ALD): Effect on bond strength to veneering ceramic
Autor: | Sandro Basso Bitencourt, Benjamin D. Hatton, Natália Almeida Bastos-Bitencourt, Daniela Micheline dos Santos, Aldiéris Alves Pesqueira, Grace Mendonca De Souza |
---|---|
Přispěvatelé: | Universidade Estadual Paulista (UNESP), University of Toronto, Universidade de São Paulo (USP), University of Louisville |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP Scopus Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP |
ISSN: | 1878-0180 |
Popis: | Made available in DSpace on 2022-04-29T08:40:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2022-05-01 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Natural Sciences and Engineering Research Council of Canada Purpose: To develop and to characterize a hybrid interface between yttria-stabilized zirconia (Y-TZP) transformed layer and silica-based nanofilm to enable a better bonding between Y-TZP and a veneering ceramic. Material and methods: Sixty-six fully-sintered rectangular Y-TZP specimens were distributed into 6 groups, according to the surface treatment applied: C (control): no treatment; Al: 27 μm-alumina particle abrasion; Ht: hydrothermal treatment in autoclave for 15h; Si20: 20 cycles of silica deposition using room-temperature atomic layer deposition (RT-ALD); Si40: 40 cycles of RT-ALD; Ht + Si40: hydrothermal treatment followed by 40 cycles of RT-ALD. RT-ALD was performed by the sequential exposure of specimens to vapor of tetramethoxysilane orthosilicate (TMOS) and ammonium hydroxide (NH4OH). Y-TZP surface wettability and shear bond strength (SBS) between Y-TZP and the veneering ceramic were analyzed for all groups after surface treatments. One-way ANOVA and Tukey's HSD test were used for data analysis (p ≤ 0.05). Results: The highest contact angle was observed for the control group (64.46 ± 6.09 θ), while the lowest values (p < 0.001) were presented after Si20 (29.85 ± 4.23 θ) and Si40 (30.37 ± 5.51 θ) treatments. Hydrothermal treatment (49.3 ± 2.69 θ) and alumina abrasion (45.84 ± 4.12 θ) resulted in intermediate contact angle values. The highest SBS values were observed for Al (16.74 ± 1.68 MPa) and Ht (15.27 ± 2.11 MPa) groups (p < 0.018). Groups Si20 (9.66 ± 1.22 MPa), Si40 (9.33 ± 2.11 MPa), Ht + Si40 (9.37 ± 1.02 MPa) and C (12.54 ± 2.64 MPa) all resulted in similar SBS results (p > 0.998). Conclusion: The experimental treatments proposed enhanced surface wettability, but shear bond strength between Y-TZP and veneering ceramic was not improved. Alumina particle-abrasion improved SBS values while a decrease in wettability was observed. Department of Dental Materials and Prosthodontics Aracatuba School of Dentistry Sao Paulo State University (UNESP) Materials Science and Engineering University of Toronto Department of Operative Dentistry Endodontics and Dental Materials Bauru School of Dentistry University of Sao Paulo School of Dentistry University of Louisville Department of Dental Materials and Prosthodontics Aracatuba School of Dentistry Sao Paulo State University (UNESP) |
Databáze: | OpenAIRE |
Externí odkaz: |