Topological lower bounds for arithmetic networks

Autor: Nicolai Vorobjov, Andrei Gabrielov
Rok vydání: 2016
Předmět:
Zdroj: Gabrielov, A & Vorobjov, N 2017, ' Topological lower bounds for arithmetic networks ', Computational Complexity, vol. 26, no. 3, pp. 687-715 . https://doi.org/10.1007/s00037-016-0145-8
ISSN: 1420-8954
1016-3328
DOI: 10.1007/s00037-016-0145-8
Popis: We prove a complexity lower bound on deciding membership in a semialgebraic set for arithmetic networks in terms of the sum of Betti numbers with respect to "ordinary" (singular) homology. This result complements a similar lower bound by Montana, Morais and Pardo for locally close semialgebraic sets in terms of the sum of Borel-Moore Betti numbers. We also prove a lower bound in terms of the sum of Betti numbers of the projection of a semialgebraic set to a coordinate subspace.
19 pages, 10 figures
Databáze: OpenAIRE