The unavoidable arrangements of pseudocircles
Autor: | Jorge Ramírez-Alfonsín, Carolina Medina, Gelasio Salazar |
---|---|
Přispěvatelé: | Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Department of Combinatorics and Optimization, University of Waterloo [Waterloo] |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Applied Mathematics General Mathematics 010102 general mathematics MSC 2010 : 52C30 05C10 0102 computer and information sciences 01 natural sciences 52C30 05C10 010201 computation theory & mathematics Simple (abstract algebra) FOS: Mathematics Mathematics - Combinatorics Combinatorics (math.CO) 0101 mathematics [MATH]Mathematics [math] Mathematics |
Zdroj: | Proceedings of the American Mathematical Society Proceedings of the American Mathematical Society, American Mathematical Society, In press, ⟨10.1090/proc/14498⟩ |
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14498⟩ |
Popis: | International audience; A fact closely related to the classical Erdos-Szekeres theorem is that cyclic arrangements are the only unavoidable simple arrangements of pseudolines: for each fixed m ≥ 1, every sufficiently large simple arrangement of pseudolines has a cyclic subarrangement of size m. In the same spirit, we show that there are three unavoidable arrangements of pseudocircles. |
Databáze: | OpenAIRE |
Externí odkaz: |