Analysis of the Riemann Problem for a shallow water model with two velocities
Autor: | Martin Parisot, Nina Aguillon, Emmanuel Audusse, Edwige Godlewski |
---|---|
Přispěvatelé: | Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Numerical Analysis, Geophysics and Ecology (ANGE), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Cité (USPC)-Université Paris 13 (UP13)-Institut Galilée-Université Paris 8 Vincennes-Saint-Denis (UP8), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Coalescence (physics)
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] Applied Mathematics Mathematical analysis [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] 01 natural sciences 010305 fluids & plasmas 010101 applied mathematics Computational Mathematics Waves and shallow water symbols.namesake Riemann problem 0103 physical sciences symbols Initial value problem [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] 0101 mathematics Shallow water equations Analysis Eigenvalues and eigenvectors Mathematics |
Zdroj: | SIAM Journal on Mathematical Analysis SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2018, ⟨10.1137/17M1152887⟩ SIAM Journal on Mathematical Analysis, 2018, ⟨10.1137/17M1152887⟩ |
ISSN: | 0036-1410 |
DOI: | 10.1137/17M1152887⟩ |
Popis: | International audience; Some shallow water type models describing the vertical profile of the horizontal velocity with several degrees of freedom have been recently proposed. The question addressed in the current work is the hyperbolicity of a shallow water model with two velocities. The model is written in a nonconservative form and the analysis of its eigenstructure shows the possibility that two eigenvalues coincide. A definition of the nonconservative product is given which enables us to analyse the resonance and coalescence of waves. Eventually, we prove the well-posedness of the two dimensional Riemann problem with initial condition constant by half-plane. |
Databáze: | OpenAIRE |
Externí odkaz: |