Evaluation of chemotherapy and P2Et extract combination in ex-vivo derived tumor mammospheres from breast cancer patients
Autor: | Paola Lasso, Tito A. Sandoval, Alfonso Barreto, Claudia Urueña, Lilian Torregrosa, Susana Fiorentino, Mauricio Tawil |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Adult
Cancer therapy medicine.medical_treatment Phytochemicals lcsh:Medicine Breast Neoplasms Article Metastasis Breast cancer Mice Inbred NOD Cell Line Tumor Antineoplastic Combined Chemotherapy Protocols Medicine Animals Humans lcsh:Science Neoadjuvant therapy Aged Chemotherapy Multidisciplinary Caesalpinia business.industry Cancer stem cells Plant Extracts lcsh:R Cancer Middle Aged medicine.disease Xenograft Model Antitumor Assays Neoadjuvant Therapy Drug Resistance Neoplasm Cancer cell Cancer research Neoplastic Stem Cells Female lcsh:Q Stem cell Neoplasm Recurrence Local business Ex vivo |
Zdroj: | Scientific Reports, Vol 10, Iss 1, Pp 1-15 (2020) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-020-76619-9 |
Popis: | The main cause of death by cancer is metastasis rather than local complications of primary tumors. Recent studies suggest that breast cancer stem cells (BCSCs), retains the ability to self-renew and differentiate to repopulate the entire tumor, also, they have been associated with resistance to chemotherapy and tumor recurrence, even after tumor resection. Chemotherapy has been implicated in the induction of resistant phenotypes with highly metastatic potential. Naturally occurring compounds, especially phytochemicals such as P2Et, can target different populations of cancer cells as well as BCSC, favoring the activation of immune response via immunogenic tumor death. Here, we evaluated the presence of BCSC as well as markers related to drug resistance in tumors obtained from 78 patients who had received (or not) chemotherapy before surgery. We evaluated the ex vivo response of patient tumor-derived organoids (or mammospheres) to chemotherapy alone or in combination with P2Et. A xenotransplant model engrafted with MDA-MB-468 was used to evaluate in vivo the activity of P2Et, in this model P2Et delay tumor growth. We show that patients with luminal and TNBC, and those who received neoadjuvant therapy before surgery have a higher frequency of BCSC. Further, the treatment with P2Et in mammospheres and human breast cancer cell lines improve the in vitro tumor death and decrease its viability and proliferation together with the release of immunogenic signals. P2Et could be a good co-adjuvant in antitumor therapy in patients, retarding the tumor growth by enabling the activation of the immune response. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |
Pro tento záznam nejsou dostupné žádné jednotky.