BHK mirror symmetry for K3 surfaces with non-symplectic automorphism
Autor: | Paola Comparin, Nathan Priddis |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Class (set theory) General Mathematics 010102 general mathematics Order (ring theory) Lattice (discrete subgroup) Automorphism 01 natural sciences K3 surface Mathematics - Algebraic Geometry 0103 physical sciences FOS: Mathematics 010307 mathematical physics 14J28 14J32 14J17 11E12 14J33 0101 mathematics Mirror symmetry Weighted projective space Algebraic Geometry (math.AG) Symplectic geometry Mathematics |
Zdroj: | Journal of the Mathematical Society of Japan. 73 |
ISSN: | 0025-5645 |
Popis: | In this paper we consider the class of K3 surfaces defined as hypersurfaces in weighted projective space, and admitting a non-symplectic automorphism of non-prime order, excluding the orders 4, 8, and 12. We show that on these surfaces the Berglund-H\"ubsch-Krawitz mirror construction and mirror symmetry for lattice polarized K3 surfaces constructed by Dolgachev agree; that is, both versions of mirror symmetry define the same mirror K3 surface. Comment: 23 pages, includes magma code used |
Databáze: | OpenAIRE |
Externí odkaz: |